Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation

Author:

Zhang Mengran1,Chen Huaqing2,Zhang Wenlong3,Liu Yan4,Ding Liuyan3,Gong Junwei1,Ma Runfang1,Zheng Shaohui1,Zhang Yunlong1ORCID

Affiliation:

1. Department of Neurology Institute of Neuroscience Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China

2. Shenzhen Key Laboratory of Gene and Antibody Therapy Center for Biotechnology and Biomedicine State Key Laboratory of Chemical Oncogenomics State Key Laboratory of Health Sciences and Technology Institute of Biopharmaceutical and Health Engineering Shenzhen International Graduate School Tsinghua University Shenzhen Guangdong 518055 China

3. Department of Neurology The First Affiliated Hospital of Guangzhou Medical University Guangzhou 510120 China

4. School of Traditional Chinese Medicine Jinan University Guangzhou 510632 China

Abstract

AbstractNeuroinflammation, for which microglia are the predominant contributors, is a significant risk factor for cognitive dysfunction. Riboflavin (also known as vitamin B2) ameliorates cognitive impairment via anti‐oxidative stress and anti‐inflammation properties; however, the underlying mechanisms linking riboflavin metabolism and microglial function in cognitive impairment remain unclear. Here, it is demonstrated that riboflavin kinase (RFK), a critical enzyme in riboflavin metabolism, is specifically expressed in microglia. An intermediate product of riboflavin, flavin mononucleotide (FMN), inhibited RFK expression via regulation of lysine‐specific methyltransferase 2B (KMT2B). FMN supplementation attenuated the pro‐inflammatory TNFR1/NF‐κB signaling pathway, and this effect is abolished by KMT2B overexpression. To improve the limited anti‐inflammatory efficiency of free FMN, a biomimetic microglial nanoparticle strategy (designated as MNPs@FMN) is established, which penetrated the blood brain barrier with enhanced microglial‐targeted delivery efficiency. Notably, MNPs@FMN ameliorated cognitive impairment and dysfunctional synaptic plasticity in a lipopolysaccharide‐induced inflammatory mouse model and in a 5xFAD mouse model of Alzheimer's disease. Taken together, biomimetic microglial delivery of FMN may serve as a potential therapeutic approach for inflammation‐dependent cognitive decline.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3