Record‐High Thermoelectric Performance in Al‐Doped ZnO via Anderson Localization of Band Edge States

Author:

Serhiienko Illia12,Novitskii Andrei1,Garmroudi Fabian3,Kolesnikov Evgeny4,Chernyshova Evgenia4,Sviridova Tatyana4,Bogach Aleksei5,Voronin Andrei4,Nguyen Hieu Duy6,Kawamoto Naoyuki6,Bauer Ernst3,Khovaylo Vladimir47,Mori Takao12ORCID

Affiliation:

1. WPI‐MANA, National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305‐0044 Japan

2. Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305‐8573 Japan

3. Institute of Solid State Physics TU Wien Vienna A‐1040 Austria

4. National University of Science and Technology MISIS Moscow 119049 Russia

5. Prokhorov General Physics Institute of the Russian Academy of Sciences Moscow 119991 Russia

6. Center for Basic Research on Materials (CBRM) National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305‐0044 Japan

7. Belgorod State University Belgorod 308015 Russia

Abstract

AbstractOxides are of interest for thermoelectrics due to their high thermal stability, chemical inertness, low cost, and eco‐friendly constituting elements. Here, adopting a unique synthesis route via chemical co‐precipitation at strongly alkaline conditions, one of the highest thermoelectric performances for ZnO ceramics ( 21.5 µW cm−1 K−2 and  0.5 at 1100 K in ) is achieved. These results are linked to a distinct modification of the electronic structure: charge carriers become trapped at the edge of the conduction band due to Anderson localization, evidenced by an anomalously low carrier mobility, and characteristic temperature and doping dependencies of charge transport. The bi‐dimensional optimization of doping and carrier localization enable a simultaneous improvement of the Seebeck coefficient and electrical conductivity, opening a novel pathway to advance ZnO thermoelectrics.

Funder

Russian Science Foundation

JST-Mirai Program

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3