Mechanically Robust, Recyclable, and Self‐Healing Polyimine Networks

Author:

Yu Ping12,Wang Haiyue1,Li Ting3,Wang Guimei1,Jia Zichen1,Dong Xinyu1,Xu Yang1,Ma Qilin1,Zhang Dongen1,Ding Hongliang4,Yu Bin4ORCID

Affiliation:

1. School of Environmental and Chemical Engineering Jiangsu Key Laboratory of Function Control Technology for Advanced Materials Jiangsu Ocean University Lianyungang Jiangsu 222005 P. R. China

2. Jiangsu Marine Resources Development Institute Lianyungang Jiangsu 222005 P. R. China

3. Shanghai Cedar Composites Technology Co., Ltd 201306 Shanghai P. R. China

4. State Key Laboratory of Fire Science University of Science and Technology of China Hefei Anhui 230026 P. R. China

Abstract

AbstractTo achieve energy saving and emission reduction goals, recyclable and healable thermoset materials are highly attractive. Polymer copolymerization has been proven to be a critical strategy for preparing high‐performance polymeric materials. However, it remains a huge challenge to develop high‐performance recyclable and healable thermoset materials. Here, polyimine dynamic networks based on two monomers with bulky pendant groups, which not only displayed mechanical properties higher than the strong and tough polymers, e.g., polycarbonate, but also excellent self‐repairing capability and recyclability as thermosets are developed. Owing to the stability of conjugation effect by aromatic benzene rings, the final polyimine networks are far more stable than the reported counterparts, exhibiting excellent hydrolysis resistance under both alkaline condition and most organic solvents. These polyimine materials with conjugation structure can be completely depolymerized into monomers recovery in an acidic aqueous solution at ambient temperature. Resulting from the bulky pendant units, this method allows the exchange reactions of conjugation polyimine vitrimer easily within minutes for self‐healing function. Moreover, the introduction of trifluoromethyl diphenoxybenzene backbones significantly increases tensile properties of polyimine materials. This work provides an effective strategy for fabricating high‐performance polymer materials with multiple functions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3