Repairing Interfacial Defects in Self‐Assembled Monolayers for High‐Efficiency Perovskite Solar Cells and Organic Photovoltaics through the SAM@Pseudo‐Planar Monolayer Strategy

Author:

Hung Chieh‐Ming1,Wu Chi‐Chi1,Yang Yu‐Hsuan1,Chen Bo‐Han2,Lu Chih‐Hsuan2,Chu Che‐Chun1,Cheng Chun‐Hao1,Yang Chun‐Yun3,Lin Yan‐Ding1,Cheng Ching‐Hsuan1,Chen Jiann‐Yeu4,Ni I‐Chih5,Wu Chih‐I5,Yang Shang‐Da2,Chen Hsieh‐Chih6,Chou Pi‐Tai1ORCID

Affiliation:

1. Department of Chemistry Center for Emerging Materials and Advanced Devices National Taiwan University Taipei 106319 Taiwan

2. Institute of Photonics Technologies National Tsing Hua University Hsinchu 300044 Taiwan

3. Department of Fiber and Composite Materials Feng Chia University Taichung 407802 Taiwan

4. i‐Center for Advanced Science and Technology (i‐CAST) and Innovation and Development Center of Sustainable Agriculture (IDCSA) National Chung Hsing University Taichung 402202 Taiwan

5. Graduate Institute of Photonics and Optoelectronics National Taiwan University Taipei 106319 Taiwan

6. Department of Chemistry Fu Jen Catholic University New Taipei City 242062 Taiwan

Abstract

AbstractLately, carbazole‐based self‐assembled monolayers (SAMs) are widely employed as effective hole‐selective layers (HSLs) in inverted perovskite solar cells (PSCs). Nevertheless, these SAMs tend to aggregate in solvents due to their amphiphilic nature, hindering the formation of a monolayer on the ITO substrate and impeding effective passivation of deep defects in the perovskites. In this study, a series of new SAMs including DPA‐B‐PY, CBZ‐B‐PY, POZ‐B‐PY, POZ‐PY, POZ‐T‐PY, and POZ‐BT‐PY are synthesized, which are employed as interfacial repairers and coated atop CNph SAM to form a robust CNph SAM@pseudo‐planar monolayer as HSL in efficient inverted PSCs. The CNph SAM@pseudo‐planar monolayer strategy enables a well‐aligned interface with perovskites, synergistically promoting perovskite crystal growth, improving charge extraction/transport, and minimizing nonradiative interfacial recombination loss. As a result, the POZ‐BT‐PY‐modified PSC realizes an impressively enhanced solar efficiency of up to 24.45% together with a fill factor of 82.63%. Furthermore, a wide bandgap PSC achieving over 19% efficiency. Upon treatment with the CNph SAM@pseudo‐planar monolayer, also demonstrates a non‐fullerene organic photovoltaics (OPVs) based on the PM6:BTP‐eC9 blend, which achieves an efficiency of 17.07%. Importantly, these modified PSCs and OPVs all show remarkably improved stability under various testing conditions compared to their control counterparts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3