Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells

Author:

Liu Cheng1ORCID,Yang Yi1ORCID,Chen Hao12ORCID,Xu Jian2,Liu Ao1ORCID,Bati Abdulaziz S. R.1ORCID,Zhu Huihui1ORCID,Grater Luke2ORCID,Hadke Shreyash Sudhakar3ORCID,Huang Chuying1ORCID,Sangwan Vinod K.3ORCID,Cai Tong14ORCID,Shin Donghoon34ORCID,Chen Lin X.1ORCID,Hersam Mark C.135ORCID,Mirkin Chad A.134ORCID,Chen Bin1ORCID,Kanatzidis Mercouri G.1ORCID,Sargent Edward H.125ORCID

Affiliation:

1. Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.

2. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.

3. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

4. International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA.

5. Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA.

Abstract

Compared with the n-i-p structure, inverted (p-i-n) perovskite solar cells (PSCs) promise increased operating stability, but these photovoltaic cells often exhibit lower power conversion efficiencies (PCEs) because of nonradiative recombination losses, particularly at the perovskite/C 60 interface. We passivated surface defects and enabled reflection of minority carriers from the interface into the bulk using two types of functional molecules. We used sulfur-modified methylthio molecules to passivate surface defects and suppress recombination through strong coordination and hydrogen bonding, along with diammonium molecules to repel minority carriers and reduce contact-induced interface recombination achieved through field-effect passivation. This approach led to a fivefold longer carrier lifetime and one-third the photoluminescence quantum yield loss and enabled a certified quasi-steady-state PCE of 25.1% for inverted PSCs with stable operation at 65°C for >2000 hours in ambient air. We also fabricated monolithic all-perovskite tandem solar cells with 28.1% PCE.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3