Cfp1 Controls Cardiomyocyte Maturation by Modifying Histone H3K4me3 of Structural, Metabolic, and Contractile Related Genes

Author:

Li Changzhu1,Zhang Yang1,Shen Jingling2,Bao Hairong1,Zhao Yue1,Li Desheng1,Li Sijia1,Liu Yining1,Yang Jiming1,Zhou Zhiwen1,Gao Kangyi1,Zhao Lexin1,Pei Yao1,Lu Yanjie1,Pan Zhenwei134ORCID,Cai Benzhi1

Affiliation:

1. Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Disease Key Laboratory of Cardiovascular Research, Ministry of Education) College of Pharmacy Harbin Medical University Harbin Heilongjiang 150086 P. R. China

2. Institute of Life Sciences College of Life and Environmental Sciences Wenzhou University Wenzhou 325035 P. R. China

3. Research Unit of Noninfectious Chronic Diseases in Frigid Zone Chinese Academy of Medical Sciences 2019 Research Unit 070 Harbin Heilongjiang 150086 P. R. China

4. Key Laboratory of Cell Transplantation The First Affiliated Hospital Harbin Medical University P. R. China

Abstract

AbstractCardiomyocyte maturation is the final stage of heart development, and abnormal cardiomyocyte maturation will lead to serious heart diseases. CXXC zinc finger protein 1 (Cfp1), a key epigenetic factor in multi‐lineage cell development, remains underexplored in its influence on cardiomyocyte maturation. This study investigates the role and mechanisms of Cfp1 in this context. Cardiomyocyte‐specific Cfp1 knockout (Cfp1‐cKO) mice died within 4 weeks of birth. Cardiomyocytes derived from Cfp1‐cKO mice showed an inhibited maturation phenotype, characterized by structural, metabolic, contractile, and cell cycle abnormalities. In contrast, cardiomyocyte‐specific Cfp1 transgenic (Cfp1‐TG) mice and human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) overexpressing Cfp1 displayed a more mature phenotype. Mechanistically, deficiency of Cfp1 led to a reduction in trimethylation on lysine 4 of histone H3 (H3K4me3) modification, accompanied by the formation of ectopic H3K4me3. Furthermore, Cfp1 deletion decreased the level of H3K4me3 modification in adult genes and increased the level of H3K4me3 modification in fetal genes. Collectively, Cfp1 modulates the expression of genes crucial to cardiomyocyte maturation by regulating histone H3K4me3 modification, thereby intricately influencing the maturation process. This study implicates Cfp1 as an important molecule regulating cardiomyocyte maturation, with its dysfunction strongly linked to cardiac disease.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3