Affiliation:
1. Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
2. Department of Energy Engineering Future Convergence Technology Research Institute Gyeongsang National University Jinju 52725 Republic of Korea
3. Hydrogen Fuel Cell Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
Abstract
AbstractThe rational design of the current anion exchange polyelectrolytes (AEPs) is challenging to meet the requirements of both high performance and durability in anion exchange membrane water electrolyzers (AEMWEs). Herein, highly‐rigid‐twisted spirobisindane monomer is incorporated in poly(aryl‐co‐aryl piperidinium) backbone to construct continuous ionic channels and to maintain dimensional stability as promising materials for AEPs. The morphologies, physical, and electrochemical properties of the AEPs are investigated based on experimental data and molecular dynamics simulations. The present AEPs possess high free volumes, excellent dimensional stability, hydroxide conductivity (208.1 mS cm−1 at 80 °C), and mechanical properties. The AEMWE of the present AEPs achieves a new current density record of 13.39 and 10.7 A cm−2 at 80 °C by applying IrO2 and nonprecious anode catalyst, respectively, along with outstanding in situ durability under 1 A cm−2 for 1000 h with a low voltage decay rate of 53 µV h−1. Moreover, the AEPs can be applied in fuel cells and reach a power density of 2.02 W cm−2 at 80 °C under fully humidified conditions, and 1.65 W cm−2 at 100 °C, 30% relative humidity. This study provides insights into the design of high‐performance AEPs for energy conversion devices.
Funder
Korea Evaluation Institute of Industrial Technology
Ministry of Trade, Industry and Energy
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献