Room‐Temperature Molding of Complex‐Shaped Transparent Fused Silica Lenses

Author:

Xu Ya1,Du Xiaotong1,Wang Zhenhua1,Liu Hua2,Huang Peng1,To Suet3,Zhu LiMin4,Zhu Zhiwei1ORCID

Affiliation:

1. School of Mechanical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 China

2. Key Laboratory for UV Emitting Materials and Technology of Ministry of Education Northeast Normal University 5268 Renmin Street Changchun 130024 China

3. State Key Laboratory of Ultra‐precision Machining Technology Department of Industrial and Systems Engineering The Hong Kong Polytechnic University 11 Yuk Choi Rd Kowloon Hong Kong SAR 999077 China

4. State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China

Abstract

AbstractThe high hardness, brittleness, and thermal resistance impose significant challenges in the scalable manufacturing of fused silica lenses, which are widely used in numerous applications. Taking advantage of the nanocomposites by stirring silica nanopowders with photocurable resins, the newly emerged low‐temperature pre‐shaping technique provides a paradigm shift in fabricating transparent fused silica components. However, preparing the silica slurry and carefully evaporating the organics may significantly increase the process complexity and decrease the manufacturing efficiency for the nanocomposite‐based technique. By directly pressing pure silica nanopowders against the complex‐shaped metal molds in minutes, this work reports an entirely different room‐temperature molding method capable of mass replication of complex‐shaped silica lenses without organic additives. After sintering the replicated lenses, fully transparent fused silica lenses with spherical, arrayed, and freeform patterns are generated with nanometric surface roughness and well‐reserved mold shapes, demonstrating a scalable and cost‐effective route surpassing the current techniques for the manufacturing of high‐quality fused silica lenses.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3