Device‐Algorithm Co‐Optimization for an On‐Chip Trainable Capacitor‐Based Synaptic Device with IGZO TFT and Retention‐Centric Tiki‐Taka Algorithm

Author:

Won Jongun1,Kang Jaehyeon1,Hong Sangjun2,Han Narae1,Kang Minseung1,Park Yeaji1,Roh Youngchae1,Seo Hyeong Jun1,Joe Changhoon1,Cho Ung1,Kang Minil3,Um Minseong4,Lee Kwang‐Hee5,Yang Jee‐Eun5,Jung Moonil5,Lee Hyung‐Min4,Oh Saeroonter6,Kim Sangwook5,Kim Sangbum1ORCID

Affiliation:

1. Department of Materials Science & Engineering Inter‐university Semiconductor Research Center Research Institute of Advanced Materials Seoul National University Seoul 08826 Republic of Korea

2. Device Solutions Samsung Electronics Pyeongtaek 17786 Republic of Korea

3. Department of Semiconductor System Engineering Korea University Seoul 02841 Republic of Korea

4. School of Electrical Engineering Korea University Seoul 02841 Republic of Korea

5. Samsung Advanced Institute of Technology (SAIT) Samsung Electronics Suwon‐si 16678 Republic of Korea

6. Department of Electrical and Electronic Engineering Hanyang University Ansan 15588 Republic of Korea

Abstract

AbstractAnalog in‐memory computing synaptic devices are widely studied for efficient implementation of deep learning. However, synaptic devices based on resistive memory have difficulties implementing on‐chip training due to the lack of means to control the amount of resistance change and large device variations. To overcome these shortcomings, silicon complementary metal‐oxide semiconductor (Si‐CMOS) and capacitor‐based charge storage synapses are proposed, but it is difficult to obtain sufficient retention time due to Si‐CMOS leakage currents, resulting in a deterioration of training accuracy. Here, a novel 6T1C synaptic device using only n‐type indium gaIlium zinc oxide thin film transistor (IGZO TFT) with low leakage current and a capacitor is proposed, allowing not only linear and symmetric weight update but also sufficient retention time and parallel on‐chip training operations. In addition, an efficient and realistic training algorithm to compensate for any remaining device non‐idealities such as drifting references and long‐term retention loss is proposed, demonstrating the importance of device‐algorithm co‐optimization.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3