Deep Learning Enables Rapid Identification of a New Quasicrystal from Multiphase Powder Diffraction Patterns

Author:

Uryu Hirotaka1,Yamada Tsunetomo1ORCID,Kitahara Koichi23ORCID,Singh Alok4,Iwasaki Yutaka35ORCID,Kimura Kaoru35ORCID,Hiroki Kanta1,Miyao Naoya6,Ishikawa Asuka7ORCID,Tamura Ryuji6ORCID,Ohhashi Satoshi8,Liu Chang9ORCID,Yoshida Ryo910ORCID

Affiliation:

1. Department of Applied Physics Tokyo University of Science 6‐3‐1 Niijuku, Katsushika‐ku Tokyo 125‐8585 Japan

2. Department of Materials Science and Engineering National Defense Academy 1‐10‐20 Hashirimizu, Yokosuka Kanagawa 239‐8686 Japan

3. Department of Advanced Materials Science The University of Tokyo 5‐1‐5 Kashiwanoha, Kashiwa Chiba 277‐8561 Japan

4. Electron Microscopy Unit, Research Network and Facility Services Division National Institute for Materials Science 1‐2‐1 Sengen Tsukuba Ibaraki 305‐0047 Japan

5. Thermal Energy Materials Group, Research Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐2‐1 Sengen, Tsukuba Ibaraki 305‐0047 Japan

6. Department of Materials Science and Technology Tokyo University of Science 6‐3‐1 Niijuku, Katsushika‐ku Tokyo 125‐8585 Japan

7. Research Institute of Science and Technology Tokyo University of Science 6‐3‐1 Niijuku, Katsushika‐ku Tokyo 125‐8585 Japan

8. Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2‐1‐1 Katahira, Aoba‐ku, Sendai Miyagi 980‐8577 Japan

9. The Institute of Statistical Mathematics Research Organization of Information and Systems 10‐3 Midori‐cho, Tachikawa Tokyo 190‐8562 Japan

10. Department of Statistical Science The Graduate University for Advanced Studies 10‐3 Midori‐cho, Tachikawa Tokyo 190‐8562 Japan

Abstract

AbstractSince the discovery of the quasicrystal, approximately 100 stable quasicrystals are identified. To date, the existence of quasicrystals is verified using transmission electron microscopy; however, this technique requires significantly more elaboration than rapid and automatic powder X‐ray diffraction. Therefore, to facilitate the search for novel quasicrystals, developing a rapid technique for phase‐identification from powder diffraction patterns is desirable. This paper reports the identification of a new Al–Si–Ru quasicrystal using deep learning technologies from multiphase powder patterns, from which it is difficult to discriminate the presence of quasicrystalline phases even for well‐trained human experts. Deep neural networks trained with artificially generated multiphase powder patterns determine the presence of quasicrystals with an accuracy >92% from actual powder patterns. Specifically, 440 powder patterns are screened using the trained classifier, from which the Al–Si–Ru quasicrystal is identified. This study demonstrates an excellent potential of deep learning to identify an unknown phase of a targeted structure from powder patterns even when existing in a multiphase sample.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3