Accelerating Materials Discovery: Automated Identification of Prospects from X‐Ray Diffraction Data in Fast Screening Experiments

Author:

Schuetzke Jan1ORCID,Schweidler Simon2,Muenke Friedrich R.1,Orth Andre1,Khandelwal Anurag D.2,Breitung Ben2,Aghassi‐Hagmann Jasmin2,Reischl Markus1

Affiliation:

1. Institute for Automation and Applied Informatics Karlsruhe Institute of Technology Hermann‐von‐Helmholtz Platz 1 76344 Eggenstein‐Leopoldshafen Germany

2. Institute of Nanotechnology Karlsruhe Institute of Technology Hermann‐von‐Helmholtz Platz 1 76344 Eggenstein‐Leopoldshafen Germany

Abstract

New materials are frequently synthesized and optimized with the explicit intention to improve their properties to meet the ever‐increasing societal requirements for high‐performance and energy‐efficient electronics, new battery concepts, better recyclability, and low‐energy manufacturing processes. This often involves exploring vast combinations of stoichiometries and compositions, a process made more efficient by high‐throughput robotic platforms. Nonetheless, subsequent analytical methods are essential to screen the numerous samples and identify promising material candidates. X‐ray diffraction is a commonly used analysis method available in most laboratories which gives insight into the crystalline structure and reveals the presence of phases in a powder sample. Herein, a method for automating the analysis of XRD patterns, which uses a neural network model to classify samples into nondiffracting, single‐phase, and multi‐phase structures, is presented. To train neural networks for identifying materials with compositions not matching known crystallographic structures, a synthetic data generation approach is developed. The application of the neural networks on high‐entropy oxides experimental data is demonstrated, where materials frequently deviate from anticipated structures. Our approach, not limited to these materials, seamlessly integrates into high‐throughput data analysis pipelines, either filtering acquired patterns or serving as a standalone method for automated material exploration workflows.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3