A Separator with Double Coatings of Li4Ti5O12and Conductive Carbon for Li‐S Battery of Good Electrochemical Performance

Author:

Xia Shuang1,Song Jie1,Zhou Qi1,Liu Lili1,Ye Jilei1,Wang Tao2,Chen Yuhui1,Liu Yankai3,Wu Yuping12ORCID,van Ree Teunis4

Affiliation:

1. State Key Laboratory of Materials‐oriented Chemical Engineering School of Energy Science and Engineering Nanjing Tech University Nanjing Jiangsu 211816 China

2. School of Energy and Environment South East University Nanjing Jiangsu 211189 China

3. Hunan Bolt Power New Energy Co. Ltd., Dianjiangjun Industrial Park Louxing District Hunan Road Loudi 417000 China

4. Department of Chemistry University of Venda Thohoyandou 0950 South Africa

Abstract

AbstractThe market demand for energy pushes researchers to pay a lot of attention to Li‐S batteries. However, the ‘shuttle effect’, the corrosion of lithium anodes, and the formation of lithium dendrites make the poor cycling performances (especially under high current densities and high sulfur loading) of Li‐S batteries, which limit their commercial applications. Here, a separator is prepared and modified with Super P and LTO (abbreviation SPLTOPD) through a simple coating method. The LTO can improve the transport ability of Li+cations, and the Super P can reduce the charge transfer resistance. The prepared SPLTOPD can effectively barrier the pass‐through of polysulfides, catalyze the reactions of polysulfides into S2−, and increase the ionic conductivity of the Li‐S batteries. The SPLTOPD can also prevent the aggregation of insulating sulfur species on the surface of the cathode. The assembled Li‐S batteries with the SPLTOPD can cycle 870 cycles at 5 C with the capacity attenuation of 0.066% per cycle. When the sulfur loading is up to 7.6 mg cm−2, the specific discharge capacity at 0.2 C can reach 839 mAh g−1, and the surface of lithium anode after 100 cycles does not show the existence lithium dendrites or a corrosion layer. This work provides an effective way for the preparation of commercial separators for Li‐S batteries.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3