Author:
Wang Jiaqi,Yao Junyi,Li Wanying,Zhu Wenhao,Yang Jie,Zhao Jianqing,Gao Lijun
Abstract
Transition metal molybdates have been studied as anode materials for high-performance lithium-ion batteries, owing to their high theoretical capacity and low cost, as well as the multivalent states of molybdenum. However, their electrochemical performance is hindered by poor conductivity and large volume changes during charge and discharge. Here, we report lithium molybdate (Li2MoO4) composited with carbon nanofibers (Li2MoO4@CNF) as an anode material for lithium-ion batteries. Li2MoO4 shows a shot-rod nanoparticle morphology that is tightly wound in the fibrous CNF. Compared with bare Li2MoO4, the Li2MoO4@CNF composite demonstrates superior high specific capacity and cycling stability, which are attributed to the reversible Li-ion intercalation in the LixMoyOz amorphous phase during charge and discharge. The capacity of the Li2MoO4@CNF anode material can reach 830 mAh g-1 in the second cycle and 760 mAh g-1 after 100 cycles at a charge/discharge current density of 100 mA g-1, which is much better than the bare Li2MoO4. This work provides a simple method to prepare a high-capacity and stable lithium molybdate anode material for lithium-ion batteries.
Funder
Natural Science foundation of China
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献