Affiliation:
1. Shanghai Stomatological Hospital & School of Stomatology The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science Fudan University Shanghai 200032 China
Abstract
AbstractThe most pronounced neuropathological feature of Parkinson's disease (PD) is the loss of dopamine (DA) neurons in the substantia nigra compacta (SNc), which depletes striatal DA. Hypothalamic oxytocin is found to be reduced in PD patients and closely interacts with the DA system, but the role of oxytocin in PD remains unclear. Here, the disturbances of endogenous oxytocin level and the substantia nigra (SN) oxytocin receptor expression in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced PD mouse model is observed, correlated with the striatal tyrosine hydroxylase (TH) expression reduction. Killing/silencing hypothalamic oxytocin neurons aggravates the vulnerability of nigrostriatal DA signal to MPTP, whereas elevating oxytocin level by intranasal delivery or microinjecting into the SN promotes the resistance. In addition, knocking out SN oxytocin receptors induces the time‐dependent reductions of SNc DA neurons, striatal TH expression, and striatal DA level by increasing neuronal excitotoxicity. These results further uncover that oxytocin dampens the excitatory synaptic inputs onto DA neurons via activating oxytocin receptor‐expressed SN GABA neurons, which target GABA(B) receptors expressed in SNc DA neuron‐projecting glutamatergic axons, to reduce excitotoxicity. Thus, besides the well‐known prosocial effect, oxytocin acts as a key endogenous factor in protecting the nigrostriatal DA system.
Funder
National Natural Science Foundation of China