Color‐Changing Paints Enabled by Photoresponsive Combinations of Bio‐Inspired Colorants and Semiconductors

Author:

Martin Cassandra L.1,Flynn Kaitlyn R.1,Kim Taehwan2,Nikolic Skyler K.1,Deravi Leila F.2ORCID,Wilson Daniel J.13ORCID

Affiliation:

1. Kostas Research Institute at Northeastern University Burlington MA 01803 USA

2. Department of Chemistry and Chemical Biology Northeastern University Boston MA 02115 USA

3. Department of Chemical Engineering Northeastern University Boston MA 02115 USA

Abstract

AbstractModern paints and coatings are designed for a variety of applications, ranging from fine art to extraterrestrial thermal control. These systems can be engineered to provide lasting color, but there are a limited number of materials that can undergo transient changes in their visual appearance in response to external stimuli without requirements for advanced fabrication strategies. The authors describe color‐changing paint formulations that leverage the redox‐dependent absorption profile of xanthommatin, a small‐molecule colorant found throughout biology, and the electronic properties of titanium dioxide, a ubiquitous whitening agent in commercial coatings. This combination yields reversible photoreduction upon exposure to sunlight, shifting from the oxidized (yellow) form of xanthommatin, to the reduced (red) state. The extent of photoreduction is dependent on the loading density and size of titanium dioxide particles, generating changes in hue angle as large as 77% upon irradiation. These coatings can be blended with non‐responsive supplemental colorants to expand the accessible color palette, and irradiated through masks to create transient, disappearing artwork. These formulations demonstrate energy‐efficient photochromism using a simple combination of a redox‐active dye and metal oxide semiconductor, highlighting the utility of these materials for the development of optically dynamic light‐harvesting materials.

Funder

Defense Sciences Office, DARPA

U.S. Department of Defense

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3