Affiliation:
1. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
2. Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
3. Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
4. University of Chinese Academy of Sciences Beijing 100049 P. R. China
Abstract
AbstractBroadband photodetectors (PDs) with low detection limits hold significant importance to next‐generation optoelectronic devices. However, simultaneously detecting broadband (i.e., X‐ray to visible regimes) and weak lights in a single semiconducting material remains highly challenging. Here, by alloying iodine‐substituted short‐chain cations into the 3D FAPbI3 (FA = formamidine), a new 2D bilayered lead iodide hybrid perovskite, (2IPA)2FAPb2I7 (1, 2IPA = 2‐iodopropylammonium), that enables addressing this challenge is reported. Such a 2D multilayered structure and lead iodide composition jointly endow 1 with a minimized dark current (6.04 pA), excellent electrical property, and narrow bandgap (2.03 eV), which further gives it great potential for detecting broadband weak lights. Consequently, its high‐quality single crystal PDs exhibit remarkable photoresponses to weak ultraviolet–visible lights (377–637 nm) at several tens of nW cm−2 with high responsivities (>102 mA W−1) and significant detectivities (>1012 Jones). Moreover, 1 has an excellent X‐ray detection performance with a high sensitivity of 438 µC Gy−1 cm−2 and an ultralow detection limit of 20 nGy s−1. These exceptional attributes make 1 a promising material for broadband weak lights detection, which also sheds light on future explorations of high‐performance PDs based on 2D hybrid perovskites.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献