Affiliation:
1. SKL of Marine Food Processing & Safety Control National Engineering Research Center of Seafood Collaborative Innovation Center of Seafood Deep Processing School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
Abstract
AbstractOral delivery of antidiabetic active components promises to free millions of people from daily suffering who require routine injections. However, oral insulin (Ins) and other short‐acting compounds such as nateglinide (NG) in harsh gastrointestinal tract still face great challenging, including low bioavailability, and rapid elimination. In this study, inspired by the self‐assembly of phenylalanine‐based peptides in nature, it is showed that NG a small phenylalanine derivative, assembles into left‐handed helical nanofibers in the presence of Ca2+. These helical NG nanofibers functioned as a coating layer on the surface of Ca2+‐linked alginate (Alg) microgels for the effective encapsulation of Ins. As expected, the sustained release and prolonged circulation of Ins and NG from the Ins‐loading Alg/NG microgels (Ins@Alg/NG) in the intestinal tract synergistically maintain a relatively normal blood glucose level in streptozotocin‐induced diabetic mice after oral administration of Ins@Alg/NG. This further confirms that Ins@Alg/NG ameliorated Ins resistance mainly through activating Insreceptor substrate 1 (IRS1), protein kinase B (AKT), and AMP‐activated protein kinase (AMPK), as well as by repressing glycogen synthase kinase‐3β (GSK‐3β). The strategy of using the assembly of NG as a coating achieves the oral delivery of insulin and showcases a potential for the treatment of diabetes.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献