Spatial Reconstruction of Oligo and Single Cells by De Novo Coalescent Embedding of Transcriptomic Networks

Author:

Zhao Yuxuan1,Zhang Shiqiang12,Xu Jian3,Yu Yangyang1,Peng Guangdun345,Cannistraci Carlo Vittorio67ORCID,Han Jing‐Dong J.1ORCID

Affiliation:

1. Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Center for Quantitative Biology (CQB) Peking University Beijing 100871 P. R. China

2. CAS Key Laboratory of Computational Biology Shanghai Institute of Nutrition and Health Chinese Academy of Sciences 320 Yue Yang Road Shanghai 200031 P. R. China

3. Center for Cell Lineage and Development CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 P. R. China

4. Center for Cell Lineage and Atlas Bioland Laboratory Guangzhou 510530 P. R. China

5. Biomedical Cybernetics Group, Biotechnology Center (BIOTEC) Center for Molecular and Cellular Bioengineering (CMCB) Technische Universität Dresden Tatzberg 47–49 01307 Dresden Germany

6. Center for Complex Network Intelligence (CCNI) Tsinghua Laboratory of Brain and Intelligence (THBI) Department of Physics, Department of Computer Science Department of Biomedical Engineering Tsinghua University 60 Chengfu Road Beijing 100084 P. R. China

7. Center for Systems Biology Dresden (CSBD) Pfotenhauerstr 108, 01307 Dresden Germany

Abstract

AbstractSingle cell RNA‐seq (scRNA‐seq) profiles conceal temporal and spatial tissue developmental information. De novo reconstruction of single cell temporal trajectory has been fairly addressed, but reverse engineering single cell 3D spatial tissue organization is hitherto landmark based, and de novo spatial reconstruction is a compelling computational open problem. Here it is shown that a proposed algorithm for de novo coalescent embedding (D‐CE) of oligo/single cell transcriptomic networks can help to address this problem. Relying on the spatial information encoded in the expression patterns of genes, it is found that D‐CE of cell–cell association transcriptomic networks, by preserving mesoscale network organization, captures spatial domains, identifies spatially expressed genes, reconstructs cell samples’ 3D spatial distribution, and uncovers spatial domains and markers necessary for understanding the design principles on spatial organization and pattern formation. Comparison to the novoSpaRC and CSOmap (the only available de novo 3D spatial reconstruction methods) on 14 datasets and 497 reconstructions, reveals a significantly superior performance of D‐CE.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3