Wearable Safeguarding Leather Composite with Excellent Sensing, Thermal Management, and Electromagnetic Interference Shielding

Author:

Fan Ziyang1,Lu Liang2,Sang Min1,Wu Jianpeng1,Wang Xinyi1,Xu Feng1,Gong Xinglong1,Luo Tianzhi1,Leung Ken Cham‐Fai3,Xuan Shouhu1ORCID

Affiliation:

1. CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Modern Mechanics University of Science and Technology of China (USTC) Hefei 230027 China

2. The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230036 P. R. China

3. State Key Laboratory of Environmental and Biological Analysis Department of Chemistry The Hong Kong Baptist University Kowloon Hong Kong SAR 999077 P. R. China

Abstract

AbstractThis work illustrates a “soft‐toughness” coupling design method to integrate the shear stiffening gel (SSG), natural leather, and nonwoven fabrics (NWF) for preparing leather/MXene/SSG/NWF (LMSN) composite with high anti‐impact protecting, piezoresistive sensing, electromagnetic interference (EMI) shielding, and human thermal management performance. Owing to the porous fiber structure of the leather, the MXene nanosheets can penetrate leather to construct a stable 3D conductive network; thus both the LM and LMSN composites exhibit superior conductivity, high Joule heating temperature, and an efficient EMI shielding effectiveness. Due to the excellent energy absorption of the SSG, the LMSN composites possess a huge force‐buffering (about 65.5%), superior energy dissipation (above 50%), and a high limit penetration velocity of 91 m s−1, showing extraordinary anti‐impact performance. Interestingly, LMSN composites possess an unconventional opposite sensing behavior to piezoresistive sensing (resistance reduction) and impact stimulation (resistance growing), thus they can distinguish the low and high energy stimulus. Ultimately, a soft protective vest with thermal management and impact monitoring performance is further fabricated, and it shows a typical wireless impact‐sensing performance. This method is expected to have broad application potential in the next‐generation wearable electronic devices for human safeguarding.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3