Affiliation:
1. School of Chemistry Dalian University of Technology Dalian 116024 China
2. State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
3. Frontier Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
Abstract
AbstractIt is well known that nickel‐based catalysts have high electrocatalytic activity for the 5‐hydroxymethylfurfural oxidation reaction (HMFOR), and NiOOH is the main active component. However, the price of nickel and the catalyst's lifetime still need to be solved. In this work, NiOOH containing oxygen vacancies is formed on the surface of Ni alloy by UV laser (1J85‐laser). X‐ray absorption fine structure (XAFS) analyses indicate an interaction between Mo and Ni, which affects the coordination environment of Ni with oxygen. The chemical valence of Ni is between 0 and 2, indicating the generation of oxygen vacancies. Density functional theory (DFT) suggests that Mo can increase the defect energy and form more oxygen vacancies. In situ Raman electrochemical spectroscopy shows that Mo can promote the formation of NiOOH, thus enhancing the HMFOR activity. The 1J85‐laser electrode shows a longer electrocatalytic lifetime than Ni‐laser. After 15 cycles, the conversion of HMF is 95.92%.
Funder
Fundamental Research Funds for the Central Universities
Chinese Aeronautical Establishment
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献