Stimuli‐Responsive Nanotechnology for RNA Delivery

Author:

Zhou Hui123ORCID,Chen Dean Shuailin2,Hu Caleb J.2,Hong Xuechuan1ORCID,Shi Jinjun2ORCID,Xiao Yuling2ORCID

Affiliation:

1. Department of Cardiology, Clinical Trial Center Zhongnan Hospital of Wuhan University School of Pharmaceutical Sciences Wuhan University 430071 Wuhan China

2. Center for Nanomedicine and Department of Anesthesiology Perioperative and Pain Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA

3. State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications 210023 Nanjing China

Abstract

AbstractRibonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli‐responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell‐specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli‐responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli‐responsive NP systems for RNA delivery, which may facilitate the development of next‐generation RNA medicines.

Funder

American Lung Association

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3