Affiliation:
1. State Key Laboratory of Bio‐Fibers and Eco‐Textiles Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province College of Materials Science and Engineering Institute of Marine Biobased Materials Qingdao University Ningxia Road 308 Qingdao 266071 P. R. China
Abstract
AbstractLiquid metal (LM) shows the superiority in smart wearable devices due to its biocompatibility and electromagnetic interference (EMI) shielding. However, LM based fibers that can achieve multifunctional integrated applications with biodegradability remain a daunting challenge. Herein, versatile LM based fibers are fabricated first by sonication in alginate solution to obtain LM micro/nano droplets and then wet‐spinning into LM/alginate composite fibers. By mixing with high‐concentration alginate solution (4–6 wt.%), the LM micro/nano droplets stability (colloidal stability for > 30 d and chemical stability for > 45 d) are not only improved, but also facilitate its spinning into fibers through bimetallic ions (e.g., Ga3+ and Ca2+) chelation strategy. These resultant fibers can be woven into smart textiles with excellent flexibility, air permeability, water/salt resistance, and high temperature tolerance (−196–150 °C). In addition, inhibition of smoldering result from the LM droplets and bimetallic ions is achieved to enhance flame retardancy. Furthermore, these fibers combine the exceptional properties of LM droplets (e.g., photo‐thermal effect and EMI shielding) and alginate fibers (e.g., biocompatibility and biodegradability), applicable in wearable heating devices, wireless communication, and triboelectric nanogenerator, making it a promising candidate for flexible smart textiles.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献