Plasma‐assisted incorporation of flame‐retardant chemicals for improved flame retardancy of polyester fabrics

Author:

Nandy Shreyasi12ORCID,Sreekumar T. V.1ORCID,Palaskar Shital1,Mehra Neha2

Affiliation:

1. The Bombay Textile Research Association Mumbai India

2. Department of Textile Engineering Veermata Jijabai Technological Institute Mumbai India

Abstract

AbstractThe polyester fabric was subjected to atmospheric plasma and impregnated with commercially available 3‐hydroxyphenyl phosphinyl‐propanoic acid (3HPP) as flame retarding agent by high‐temperature high pressure (HTHP) dyeing method. Various concentrations of 3HPP in water, up to 4% w/v, were applied using the HTHP method. It was observed that the plasma treatment not only enhanced wettability and wicking but also facilitated increased pickup of 3HPP onto the polyester. The treatment exhibited a noteworthy enhancement in the limiting oxygen index (LOI), rising from 20.8% for the untreated control fabric to 30% for the fabric treated with plasma and a 4% 3HPP solution. Additionally, the application of 3HPP without plasma treatment did not yield significant improvements in flame‐retardant (FR) properties. The combined treatment of plasma and 3HPP resulted in an LOI of 29% with a 2% 3HPP treatment, while at the same concentration without plasma treatment, the LOI value was 26.8%. The heightened LOI was primarily attributed to the presence of phosphorus, as confirmed by high‐performance liquid chromatography and energy‐dispersive X‐ray spectroscopy. Additionally, the wash durability assessment of plasma‐processed and 3HPP‐treated samples demonstrated sustained flame retardancy, with an LOI of approximately 28% even after undergoing 20 wash cycles. Vertical flammability and cone calorimetry also confirm improved FR properties after treatment. Remarkably, the mechanical properties and surface morphology of the fabric remained unaltered following both plasma and chemical treatments.Highlights Easy and cost‐effective technique for the downstream process for FR polyester fabric. FR agent during polymerization has the disadvantage of lower molecular weight. Potential for producing FR industrial polyester fabric. Post‐plasma treatment improves the washing fastness. The mechanical and comfort properties remain intact during the process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3