An Integrated Analog Front‐End System on Flexible Substrate for the Acquisition of Bio‐Potential Signals

Author:

Shi Runxiao1ORCID,Liu Xuchi1,Lei Tengteng1,Lu Lei2,Xia Zhihe1,Wong Man1

Affiliation:

1. State Key Laboratory of Advanced Displays and Optoelectronics and Technologies Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong 999077 China

2. School of Electronic and Computer Engineering Peking University Shenzhen 518055 China

Abstract

AbstractThe application of a versatile, low‐temperature thin‐film transistor (TFT) technology is presently described as the implementation on a flexible substrate of an analog front‐end (AFE) system for the acquisition of bio‐potential signals. The technology is based on semiconducting amorphous indium‐gallium‐zinc oxide (IGZO). The AFE system consists of three monolithically integrated constituent components: a bias‐filter circuit with a bio‐compatible low cut‐off frequency of ≈1 Hz, a 4‐stage differential amplifier offering a large gain‐bandwidth product of ≈955 kHz, and an additional notch filter exhibiting over 30 dB suppression of the power‐line noise. Respectively built using conductive IGZO electrodes with thermally induced donor agents and enhancement‐mode fluorinated IGZO TFTs with exceptionally low leakage current, both capacitors and resistors with significantly reduced footprints are realized. Defined as the ratio of the gain‐bandwidth product of an AFE system to its area, a record‐setting figure‐of‐merit of ≈86 kHz mm−2 is achieved. This is about an order of magnitude larger than the < 10 kHz mm−2 of the nearest benchmark. Requiring no supplementary off‐substrate signal‐conditioning components and occupying an area of ≈11 mm2, the stand‐alone AFE system is successfully applied to both electromyography and electrocardiography (ECG).

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3