Amorphous Heterostructure Derived from Divalent Manganese Borate for Ultrastable and Ultrafast Aqueous Zinc Ion Storage

Author:

Li Xixian1,Ji Chenchen12ORCID,Shen Jinke1,Feng Jianze3,Mi Hongyu1,Xu Yongtai3,Guo Fengjiao1,Yan Xingbin3

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources School of Chemical Engineering and Technology Xinjiang University Urumqi 830017 China

2. State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China

3. State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China

Abstract

AbstractAqueous zinc‐manganese (Zn–Mn) batteries have promising potential in large‐scale energy storage applications since they are highly safe, environment‐friendly, and low‐cost. However, the practicality of Mn‐based materials is plagued by their structural collapse and uncertain energy storage mechanism upon cycling. Herein, this work designs an amorphous manganese borate (a‐MnBOx) material via disordered coordination to alleviate the above issues and improve the electrochemical performance of Zn–Mn batteries. The unique physicochemical characteristic of a‐MnBOx enables the inner a‐MnBOx to serve as a robust framework in the initial energy storage process. Additionally, the amorphous manganese dioxide, amorphous ZnxMnO(OH)2, and Zn4SO4(OH)6·4H2O active components form on the surface of a‐MnBOx during the charge/discharge process. The detailed in situ/ex situ characterization demonstrates that the heterostructure of the inner a‐MnBOx and surface multicomponent phases endows two energy storage modes (Zn2+/H+ intercalation/deintercalation process and reversible conversion mechanism between the ZnxMnO(OH)2 and Zn4SO4(OH)6·4H2O) phases). Therefore, the obtained Zn//a‐MnBOx battery exhibits a high specific capacity of 360.4 mAh g−1, a high energy density of 484.2 Wh kg−1, and impressive cycling stability (97.0% capacity retention after 10 000 cycles). This finding on a‐MnBOx with a dual‐energy storage mechanism provides new opportunities for developing high‐performance aqueous Zn–Mn batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3