Affiliation:
1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources School of Chemical Engineering and Technology Xinjiang University Urumqi 830017 China
2. State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
3. State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
Abstract
AbstractAqueous zinc‐manganese (Zn–Mn) batteries have promising potential in large‐scale energy storage applications since they are highly safe, environment‐friendly, and low‐cost. However, the practicality of Mn‐based materials is plagued by their structural collapse and uncertain energy storage mechanism upon cycling. Herein, this work designs an amorphous manganese borate (a‐MnBOx) material via disordered coordination to alleviate the above issues and improve the electrochemical performance of Zn–Mn batteries. The unique physicochemical characteristic of a‐MnBOx enables the inner a‐MnBOx to serve as a robust framework in the initial energy storage process. Additionally, the amorphous manganese dioxide, amorphous ZnxMnO(OH)2, and Zn4SO4(OH)6·4H2O active components form on the surface of a‐MnBOx during the charge/discharge process. The detailed in situ/ex situ characterization demonstrates that the heterostructure of the inner a‐MnBOx and surface multicomponent phases endows two energy storage modes (Zn2+/H+ intercalation/deintercalation process and reversible conversion mechanism between the ZnxMnO(OH)2 and Zn4SO4(OH)6·4H2O) phases). Therefore, the obtained Zn//a‐MnBOx battery exhibits a high specific capacity of 360.4 mAh g−1, a high energy density of 484.2 Wh kg−1, and impressive cycling stability (97.0% capacity retention after 10 000 cycles). This finding on a‐MnBOx with a dual‐energy storage mechanism provides new opportunities for developing high‐performance aqueous Zn–Mn batteries.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献