Dynamic Amorphous Zn0.17MnO2−n·0.52H2O Electrochemical Crystal Transition for Highly Reversible Zinc‐Ion Batteries with Ultrahigh Capacity and Long Lifespan

Author:

Chen Yumin1,Miao Ling1,Song Ziyang1,Duan Hui1,Lv Yaokang2,Gan Lihua1,Liu Mingxian1ORCID

Affiliation:

1. Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China

2. College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China

Abstract

AbstractMn‐based oxides promise high energy density and low toxicity cathodes for aqueous zinc‐ion batteries (ZIBs) but suffer from complex irreversible phase transitions, accompanied by continuous disproportionation reactions and manganese dissolution. Tailor‐made reversible and robust crystal structure in Mn‐based material is crucial and challenging. Here a controllable electrochemical oxidation induced crystal transition strategy is developed for the transformation of cubic α‐Mn2O3 into amorphous Zn0.17MnO2−n·0.52H2O, which serves as the host of Zn2+, empowering more highly accessible built‐in zincophilic sites whilst alleviating the lattice repulsion of Zn2+ (de)intercalation. As confirmed by crystal structure evolution characterizations and theoretical simulations, the amorphous Zn0.17MnO2−n·0.52H2O with excellent electronic properties and low zinc‐ion migration barrier can be reversibly converted into ZnMn3O7·3H2O. This stabilized dynamic electrochemical crystal transition equilibrium contributes ultrahigh capacity (558 mAh g−1), high‐energy density (696 Wh kg−1@6 kW kg−1), and superior stability (5000 cycles). The approach can also extend to Mn3O4 and α‐MnO2, opening new insights into electrochemical oxidation induced crystal conversion to build highly reversible and durable ZIBs.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

China Postdoctoral Science Foundation

Shanghai Rising-Star Program

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3