Affiliation:
1. Department of Engineering and System Science National Tsing Hua University Hsinchu 30013 Taiwan
2. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
3. School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
4. Department of Materials and Mineral Resources Engineering National Taipei University of Technology Taipei 10608 Taiwan
Abstract
AbstractA ternary catalyst comprising Iridium (Ir) single‐atoms (SA)s decorated on the Co‐oxide supported palladium (Pd) nanoparticles (denoted as CPI‐SA) is developed in this work. The CPI‐SA with 1 wt.% of Ir exhibits unprecedented high mass activity (MA) of 7173 and 770 mA mgIr−1, respectively, at 0.85 and 0.90 V versus RHE in alkaline ORR (0.1 m KOH), outperforming the commercial Johnson Matthey Pt catalyst (J.M.‐Pt/C; 20 wt.% Pt) by 107‐folds. More importantly, the high structural reliability of the Ir single‐atoms endows the CPI‐SA with outstanding durability, where it shows progressively increasing MA of 13 342 and 1372 mA mgIr−1, respectively, at 0.85 and 0.90 V versus RHE up to 69 000 cycles (3 months) in the accelerated degradation test (ADT). Evidence from the in situ partial fluorescence yield X‐ray absorption spectroscopy (PFY‐XAS) and the electrochemical analysis indicate that the Ir single‐atoms and adjacent Pd domains synergistically promote the O2 splitting and subsequent desorption of hydroxide ions (OH−), respectively. Whereas the Co‐atoms underneath serve as electron injectors to boost the ORR activity of the Ir single‐atoms. Besides, a progressive and sharp drop in the ORR performance is observed when Ir‐clusters and Ir nanoparticles are decorated on the Co‐oxide‐supported Pd nanoparticles.
Funder
National Science and Technology Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献