Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction

Author:

Liu Kang,Fu Junwei,Lin Yiyang,Luo Tao,Ni Ganghai,Li Hongmei,Lin Zhang,Liu MinORCID

Abstract

AbstractSingle-atom Fe-N-C catalysts has attracted widespread attentions in the oxygen reduction reaction (ORR). However, the origin of ORR activity on Fe-N-C catalysts is still unclear, which hinder the further improvement of Fe-N-C catalysts. Herein, we provide a model to understand the ORR activity of Fe-N4 site from the spatial structure and energy level of the frontier orbitals by density functional theory calculations. Taking the regulation of divacancy defects on Fe-N4 site ORR activity as examples, we demonstrate that the hybridization between Fe 3dz2, 3dyz (3dxz) and O2 π* orbitals is the origin of Fe-N4 ORR activity. We found that the Fe–O bond length, the d-band center gap of spin states, the magnetic moment of Fe site and *O2 as descriptors can accurately predict the ORR activity of Fe-N4 site. Furthermore, these descriptors and ORR activity of Fe-N4 site are mainly distributed in two regions with obvious difference, which greatly relate to the height of Fe 3d projected orbital in the Z direction. This work provides a new insight into the ORR activity of single-atom M-N-C catalysts.

Funder

National Natural Science Foundation of China

Hunan Provincial Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3