Designing Single‐Atom Active Sites on sp2‐Carbon Linked Covalent Organic Frameworks to Induce Bacterial Ferroptosis‐Like for Robust Anti‐Infection Therapy

Author:

Sun Baohong12,Wang Xinye1,Ye Ziqiu1,Zhang Juyang1,Chen Xiong2,Zhou Ninglin1ORCID,Zhang Ming1,Yao Cheng2,Wu Fan3,Shen Jian14

Affiliation:

1. National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China

2. School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. China

3. Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 P. R. China

4. Jiangsu Engineering Research Center of Interfacial Chemistry Nanjing University Nanjing 210023 P. R. China

Abstract

AbstractWith the threat posed by drug‐resistant pathogenic bacteria, developing non‐antibiotic strategies for eradicating clinically prevalent superbugs remains challenging. Ferroptosis is a newly discovered form of regulated cell death that can overcome drug resistance. Emerging evidence shows the potential of triggering ferroptosis‐like for antibacterial therapy, but the direct delivery of iron species is inefficient and may cause detrimental effects. Herein, an effective strategy to induce bacterial nonferrous ferroptosis‐like by coordinating single‐atom metal sites (e.g., Ir and Ru) into the sp2‐carbon‐linked covalent organic framework (sp2c‐COF‐Ir‐ppy2and sp2c‐COF‐Ru‐bpy2) is reported. Upon activating by light irradiation or hydrogen peroxide, the as‐constructed Ir and Ru single‐atom catalysts (SACs) can significantly expedite intracellular reactive oxygen species burst, enhance glutathione depletion‐related glutathione peroxidase 4 deactivation, and disturb the nitrogen and respiratory metabolisms, leading to lipid peroxidation‐driven ferroptotic damage. Both SAC inducers show potent antibacterial activity against Gram‐positive bacteria, Gram‐negative bacteria, clinically isolated methicillin‐resistantStaphylococcus aureus(MRSA), and biofilms, as well as excellent biocompatibility and strong therapeutic and preventive potential in MRSA‐infected wounds and abscesses. This delicate nonferrous ferroptosis‐like strategy may open up new insights into the therapy of drug‐resistant pathogen infection.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3