Single‐Atom Immobilization Boosting Oxygen Redox Kinetics of High‐Entropy Perovskite Oxide Toward High‐Performance Lithium‐Oxygen Batteries

Author:

Du Dayue12,He Hanna2,Zheng Ruixin1,Zeng Li2,Wang Xinxiang1,Shu Chaozhu1,Zhang Chuhong2ORCID

Affiliation:

1. College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology 1#, Dongsanlu, Erxianqiao Chengdu Sichuan 610059 P. R. China

2. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute Sichuan University Chengdu Sichuan 610065 P. R. China

Abstract

AbstractUnderstanding and modulating the unique electronic interaction between single‐metal atoms and high entropy compounds are of great significance to enable their high‐efficiency oxygen electrocatalysis for aprotic lithium‐oxygen (Li‐O2) batteries. Herein, a novel bi‐functional electrocatalyst is for the first time created by immobilizing single‐atom ruthenium (Ru) on lanthanum‐based high entropy perovskite oxide La(Mn0.2Co0.2Fe0.2Ni0.2Cr0.2)O3 (Ru@HEPO), which demonstrates high activity and stability in Li‐O2 batteries. The heteronuclear coordination between single‐atom Ru and HEPO facilitates fast electron transfer from Ru to HEPO by establishing Ru‐O‐M (M stands for Mn, Co, Fe, Ni) bridges, which well redistributes electrons within the Ru@HEPO hence significantly improving its interfacial charge transfer kinetics and electrocatalytic activity. Additionally, the strong electron coupling between Ru and Mn atoms enhances the hybridization between Mn 3d and O 2p orbitals, which promotes the inherent affinity of Ru@HEPO toward the LiO2 intermediate, thereby reducing the reaction energy barrier of the oxygen electrode. As a result, the Ru@HEPO‐based Li‐O2 batteries deliver remarkable electrochemical performances, such as high energy efficiency (87.3% at 100 mA g−1), excellent rate capability (low overpotential of 0.52 V at 100 mA g−1) and durable cyclability (345 cycles at 300 mA g−1). This work opens up a promising avenue for the development of high entropy‐based electrocatalysts for Li‐O2 batteries by precisely tailoring the electronic distributions at an atomic scale.

Funder

National Natural Science Foundation of China

Science and Technology Department of Sichuan Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3