Photoinduced Radical Persistent Luminescence in Semialiphatic Polyimide System with Temperature and Humidity Resistance

Author:

Tu Fanlin1,Ye Zecong1,Mu Yingxiao123ORCID,Luo Xuwei1,Liao Liyun1,Hu Dehua1,Ji Shaomin1,Yang Zhiyong2,Chi Zhenguo23ORCID,Huo Yanping14ORCID

Affiliation:

1. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

2. Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat‐sen University Guangzhou 510275 China

3. State Key Laboratory of Optoelectronic Materials and Technologies Sun Yat‐sen University Guangzhou 510275 China

4. Analytical & Testing Center Guangdong University of Technology Guangzhou 510006 China

Abstract

AbstractOrganic persistent luminescence (pL) systems with photoresponsive dynamic features have valuable applications in the fields of data encryption, anticounterfeiting, and bioimaging. Photoinduced radical luminescent materials have a unique luminous mechanism with the potential to achieve dynamic pL. It is extremely challenging to obtain radical pL under ambient conditions; on account of it, it is unstable in air. Herein, a new semialiphatic polyimide‐based polymer (A0) is developed, which can achieve dynamic pL through reversible conversion of radical under photoexcitation. A “joint–donor–spacer–acceptor” molecular design strategy is applied to effectively modulate the intramolecular charge‐transfer and charge‐transfer complex interactions, resulting in effective protection of the radical generated under photoirradiation. Meanwhile, polyimide‐based polymers of A1–A4 are obtained by doping different amine‐containing fluorescent dyes to modulate the dynamic afterglow color from green to red via the triplet to singlet Förster resonance energy‐transfer pathway. Notably, benefiting from the structural characteristics of the polyimide‐based polymer, A0–A4 have excellent processability, thermal stability, and mechanical properties and can be applied directly in extreme environments such as high temperatures and humidity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3