Affiliation:
1. Institute for Sustainable Energy and Resources College of Chemistry and Chemical Engineering Qingdao University Qingdao P. R. China
2. International Joint Research Laboratory of Nano‐Macro Architecture Chemistry College of Chemistry Jilin University Changchun P. R. China
Abstract
AbstractAvoiding the tedious process of crystal cultivation and directly obtaining organic crystals with desirable phosphorescent performance is of great significance for studying their structure and properties. Herein, a set of benzophenone‐cored phosphors with bright green afterglow are obtained on a large scale through in‐situ generation via an end‐capping strategy to suppress non‐radiative triplet excitons and reinforce the intermolecular interactions. The ordered arrangement of phosphors with alkyl‐cyano groups as regulators is crucial for the enhancement of room‐temperature phosphorescence (RTP) emission, which has been further verified by the attenuated lifetimes in isolated states through the formation of inclusion complexes upon binding with pillar[5]arenes. Moreover, the hierarchical interactions of phosphors, including hydrogen bonding, π‐π stacking interactions, and van der Waals forces, are quantified by crystal structures and theoretical calculation to deeply interpret the origins of RTP emission. With this study, we provide a potential strategy for the direct acquisition of crystalline organic phosphors and modulation of RTP.
Funder
Natural Science Foundation of Shandong Province
Natural Science Foundation of Jilin Province
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献