Stretchable Piezoresistive Pressure Sensor Array with Sophisticated Sensitivity, Strain‐Insensitivity, and Reproducibility

Author:

Choi Su Bin1,Noh Taejoon2,Jung Seung‐Boo2,Kim Jong‐Woong134ORCID

Affiliation:

1. Department of Smart Fab Technology Sungkyunkwan University Suwon 16419 South Korea

2. School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon 16419 South Korea

3. Department of Semiconductor Convergence Engineering Sungkyunkwan University Suwon 16419 South Korea

4. School of Mechanical Engineering Sungkyunkwan University Suwon 16419 South Korea

Abstract

AbstractThis study delves into the development of a novel 10 by 10 sensor array featuring 100 pressure sensor pixels, achieving remarkable sensitivity up to 888.79 kPa−1, through the innovative design of sensor structure. The critical challenge of strain sensitivity inherent is addressed in stretchable piezoresistive pressure sensors, a domain that has seen significant interest due to their potential for practical applications. This approach involves synthesizing and electrospinning polybutadiene‐urethane (PBU), a reversible cross‐linking polymer, subsequently coated with MXene nanosheets to create a conductive fabric. This fabrication technique strategically enhances sensor sensitivity by minimizing initial current values and incorporating semi‐cylindrical electrodes with Ag nanowires (AgNWs) selectively coated for optimal conductivity. The application of a pre‐strain method to electrode construction ensures strain immunity, preserving the sensor's electrical properties under expansion. The sensor array demonstrated remarkable sensitivity by consistently detecting even subtle airflow from an air gun in a wind sensing test, while a novel deep learning methodology significantly enhanced the long‐term sensing accuracy of polymer‐based stretchable mechanical sensors, marking a major advancement in sensor technology. This research presents a significant step forward in enhancing the reliability and performance of stretchable piezoresistive pressure sensors, offering a comprehensive solution to their current limitations.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3