Myeloid‐Mas Signaling Modulates Pathogenic Crosstalk among MYC+CD63+ Endothelial Cells, MMP12+ Macrophages, and Monocytes in Acetaminophen‐Induced Liver Injury

Author:

Chen Shuai1,Lu Zhi23,Zhao Yudong4,Xia Lu1,Liu Chun1,Zuo Siqing23,Jin Manchang35,Jia Haoyu1,Li Shanshan1,Zhang Shuo1,Yang Bo1,Wang Zhijing1,Li Jing1,Wang Fei6,Yang Changqing1ORCID

Affiliation:

1. Department of Gastroenterology and Hepatology Tongji Hospital, School of Medicine, Tongji University Shanghai 200092 China

2. Department of Automation Tsinghua University Beijing 100084 China

3. Institute for Brain and Cognitive Sciences Tsinghua University Beijing 100084 China

4. Department of Liver Surgery, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China

5. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China

6. Division of Gastroenterology Seventh Affiliated Hospital of Sun Yat‐sen University Shenzhen 518107 China

Abstract

AbstractAcetaminophen overdose is a leading cause of acute liver failure (ALF). Despite the pivotal role of the inflammatory microenvironment in the progression of advanced acetaminophen‐induced liver injury (AILI), a comprehensive understanding of the underlying cellular interactions and molecular mechanisms remains elusive. Mas is a G protein‐coupled receptor highly expressed by myeloid cells; however, its role in the AILI microenvironment remains to be elucidated. A multidimensional approach, including single‐cell RNA sequencing, spatial transcriptomics, and hour‐long intravital imaging, is employed to characterize the microenvironment in Mas1 deficient mice at the systemic and cell‐specific levels. The characteristic landscape of mouse AILI models involves reciprocal cellular communication among MYC+CD63+ endothelial cells, MMP12+ macrophages, and monocytes, which is maintained by enhanced glycolysis and the NF‐κB/TNF‐α signaling pathway due to myeloid‐Mas deficiency. Importantly, the pathogenic microenvironment is delineated in samples obtained from patients with ALF, demonstrating its clinical relevance. In summary, these findings greatly enhance the understanding of the microenvironment in advanced AILI and offer potential avenues for patient stratification and identification of novel therapeutic targets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3