“Smart” Matrix Microneedle Patch Made of Self‐Crosslinkable and Multifunctional Polymers for Delivering Insulin On‐Demand

Author:

Liu Jackie Fule1ORCID,GhavamiNejad Amin1ORCID,Lu Brian1ORCID,Mirzaie Sako1ORCID,Samarikhalaj Melisa2,Giacca Adria2ORCID,Wu Xiao Yu1ORCID

Affiliation:

1. Advanced Pharmaceutics and Drug Delivery Laboratory Leslie L. Dan Faculty of Pharmacy University of Toronto Toronto M5S 3M2 Canada

2. Department of Physiology Faculty of Medicine University of Toronto Toronto M5S 1A8 Canada

Abstract

AbstractA transdermal patch that delivers insulin at high glucose concentrations can offer tremendous advantages to ease the concern of safety and improve the quality of life for people with diabetes. Herein, a novel self‐crosslinkable and glucose‐responsive polymer‐based microneedle patch (MN) is designed to deliver insulin at hyperglycemia. The microneedle patch is made of hyaluronic acid polymers functionalized with dopamine and 4‐amino‐3‐fluorophenylboronic acid (AFBA) that can be quickly crosslinked upon mixing of the polymer solutions in the absence of any chemicalcrosslinking agents or organic solvents. The catechol groups in the dopamine (DA) units form covalent crosslinkages among themselves by auto‐oxidation and dynamic crosslink with phenylboronic acid (PBA) via complexation. The reversible crosslinkages between catechol and boronate decrease with increasing glucose concentration leading to higher swelling and faster insulin release at hyperglycemia as compared to euglycemia. Such superior glucose‐responsive properties are demonstrated by in vitro analyses and in vivo efficacy studies. The hydrogel polymers also preserve native structure and bioactivity of insulin, attributable to the interaction of hyaluronic acid (HA) with insulin molecules, as revealed by experiments and molecular dynamics simulations. The simplicity in the design and fabrication process, and glucose‐responsiveness in insulin delivery impart the matrix microneedle (mMN) patch great potential for clinical translation.

Funder

Leona M. and Harry B. Helmsley Charitable Trust

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3