Wake‐Riding Effect‐Inspired Opto‐Hydrodynamic Diatombot for Non‐Invasive Trapping and Removal of Nano‐Biothreats

Author:

Xiong Jianyun1,Shi Yang1,Pan Ting1,Lu Dengyun1,He Ziyi1,Wang Danning1,Li Xing1,Zhu Guoshuai1,Li Baojun1,Xin Hongbao1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Manipulation Institute of Nanophotonics Jinan University Guangzhou 511443 P. R. China

Abstract

AbstractContamination of nano‐biothreats, such as viruses, mycoplasmas, and pathogenic bacteria, is widespread in cell cultures and greatly threatens many cell‐based bio‐analysis and biomanufacturing. However, non‐invasive trapping and removal of such biothreats during cell culturing, particularly many precious cells, is of great challenge. Here, inspired by the wake‐riding effect, a biocompatible opto‐hydrodynamic diatombot (OHD) based on optical trapping navigated rotational diatom (Phaeodactylum tricornutum Bohlin) for non‐invasive trapping and removal of nano‐biothreats is reported. Combining the opto‐hydrodynamic effect and optical trapping, this rotational OHD enables the trapping of bio‐targets down to sub‐100 nm. Different nano‐biothreats, such as adenoviruses, pathogenic bacteria, and mycoplasmas, are first demonstrated to be effectively trapped and removed by the OHD, without affecting culturing cells including precious cells such as hippocampal neurons. The removal efficiency is greatly enhanced via reconfigurable OHD array construction. Importantly, these OHDs show remarkable antibacterial capability, and further facilitate targeted gene delivery. This OHD serves as a smart micro‐robotic platform for effective trapping and active removal of nano‐biothreats in bio‐microenvironments, and especially for cell culturing of many precious cells, with great promises for benefiting cell‐based bio‐analysis and biomanufacturing.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermo-optical tweezers based on photothermal waveguides;Microsystems & Nanoengineering;2024-09-02

2. Light-Driven Microrobots for Targeted Drug Delivery;ACS Biomaterials Science & Engineering;2024-08-15

3. Natural algae-inspired microrobots for emerging biomedical applications and beyond;Cell Reports Physical Science;2024-06

4. Advanced Biomimetic and Biohybrid Magnetic Micro/Nano‐Machines;Advanced Materials Technologies;2024-05-16

5. Light-controlled soft bio-microrobot;Light: Science & Applications;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3