Advanced Biomimetic and Biohybrid Magnetic Micro/Nano‐Machines

Author:

Murali Nandan1,Das Shashank Bhushan1,Yadav Satyam2,Rainu Simran Kaur3,Singh Neetu3,Betal Soutik1ORCID

Affiliation:

1. Department of Electrical Engineering Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India

2. Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India

3. Center for Biomedical Engineering Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India

Abstract

AbstractBiomimetic and biohybrid micro/nano‐structures involve the replication and creation of technologies, structures, and materials based on biological systems at the micrometer and nanometer scale. These strategies harness the natural biological principles to develop innovative treatment methods and advanced microstructure devices for noninvasive therapies. In this study, a detailed overview of fabrication processes, magnetically assisted locomotive techniques, and potential applications of biomimetic and biohybrid micro/nano‐machines are presented. The latest advancements in magnetically actuated biomimetic structures, such as annelid‐worm‐like microswimmers, jellyfish‐shaped microparticles, fish‐shaped microswimmers, and walnut‐shaped micromotors are explored. Additionally, the magnetic biohybrid systems, including sunflower seed‐based micro‐perforators, nanomotors extracted from the bamboo stem, sperm cell‐based micromotors, bacteria‐based robots, scaffold‐based microrobots, DNA‐based micromotors, microalgae‐based microswimmers, and red blood cell‐based microswimmers are also examined. A thorough investigation of the magnetically assisted locomotive behavior of these microstructure devices in biological Newtonian fluids, featuring cork‐screw motion, undulatory motion, surface wrinkling motion, traveling wave‐like motion, and ciliary stroke motion is discussed. Furthermore, unprecedented and innovative treatment methods developed using these minuscule devices such as cervical cancer treatment using tetrapod hybrid sperm micromotors, tissue regeneration using silk fibroin protein‐based magnetic microscale scaffolds, and doxorubicin drug delivery using mushroom‐based microrobots is extensively presented.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3