Electronic‐State Modulation of Metallic Co‐Assisted Co7Fe3 Alloy Heterostructure for Highly Efficient and Stable Overall Water Splitting

Author:

Wang Xinyu1,Xu Xiaoqin1,Nie Yao1,Wang Ruihong1,Zou Jinlong1ORCID

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China School of Chemistry and Materials Science Heilongjiang University Harbin 150080 China

Abstract

AbstractManipulating electronic structure of alloy‐based electrocatalysts can eagerly regulate its catalytic efficiency and corrosion resistance for water splitting and fundamentally understand the catalytic mechanisms for oxygen/hydrogen evolution reactions (OER/HER). Herein, the metallic Co‐assisted Co7Fe3 alloy heterojunction (Co7Fe3/Co) embeds in a 3D honeycomb‐like graphitic carbon is purposely constructed as a bifunctional catalyst for overall water splitting. As‐marked Co7Fe3/Co‐600 displays the excellent catalytic activities in alkaline media with low overpotentials of 200 mV for OER and 68 mV for HER at 10 mA cm−2. Theoretical calculations reveal the electronic redistribution after coupling Co with Co7Fe3, which likely forms the electron‐rich state over interfaces and the electron‐delocalized state at Co7Fe3 alloy. This process changes the d‐band center position of Co7Fe3/Co and optimizes the affinity of catalyst surface to intermediates, thus promoting the intrinsic OER/HER activities. For overall water splitting, the electrolyzer only requires a cell voltage of 1.50 V to achieve 10 mA cm−2 and dramatically retains 99.1% of original activity after 100 h of continuous operation. This work proposes an insight into modulation of electronic state in alloy/metal heterojunctions and explores a new path to construct more competitive electrocatalysts for overall water splitting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3