Modulation of Phase Transition in Cobalt Selenide with Simultaneous Construction of Heterojunctions for Highly‐Efficient Oxygen Electrocatalysis in Zinc–Air Battery

Author:

Xu Xiaoqin1,Wang Xinyu1,Huo Sichen1,Liu Xiaofeng1,Ma Xuena1,Liu Mingyang1,Zou Jinlong1ORCID

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China School of Chemistry and Materials Science Heilongjiang University Harbin 150080 China

Abstract

AbstractPhase transformation of cobalt selenide (CoSe2) can effectively modulate its intrinsic electrocatalytic activity. However, enhancing electroconductivity and catalytic activity/stability of CoSe2 still remains challenging. Heterostructure engineering may be feasible to optimize interfacial properties to promote the kinetics of oxygen electrocatalysis on a CoSe2‐based catalyst. Herein, a heterostructure consisting of CoSe2 and cobalt nitride (CoN) embedded in a hollow carbon cage is designed via a simultaneous phase/interface engineering strategy. Notably, the phase transition of orthorhombic‐CoSe2 to cubic‐CoSe2 (c‐CoSe2) accompanied by in situ CoN formation is realized to build the c‐CoSe2/CoN heterointerface, which exhibits excellent/highly stable activities for oxygen reduction/evolution reactions (ORR/OER). Notably, heterostructure can modulate the local coordination environment and increase Co‐Se/N bond lengths. Theoretical calculations show that Co‐site (c‐CoSe2) with an electronic state near Fermi energy level is the main active site for ORR/OER.Energetical tailoring of the d‐orbital electronic structure of the Co atom of c‐CoSe2 in heterostructure by in situ CoN incorporation lowers thermodynamic barriers for ORR/OER. Attractively, a zinc‐air battery with a c‐CoSe2‐CoN cathode displays excellent cycling stability (250 h) and charge/discharge voltage loss (0.953/0.96 V). It highlights that heterointerface engineering provides an option for modulating the bifunctional activity of metal selenides with controlled phase transformation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3