Lactate Efflux Inhibition by Syrosingopine/LOD Co‐Loaded Nanozyme for Synergetic Self‐Replenishing Catalytic Cancer Therapy and Immune Microenvironment Remodeling

Author:

Wu Shengming1,Xu Lehua1,He Chenlong1,Wang Peng1,Qin Jingwen1,Guo Fangfang1,Wang Yilong1ORCID

Affiliation:

1. The Institute for Translational Nanomedicine Shanghai East Hospital The Institute for Biomedical Engineering and Nano Science School of Medicine Tongji University Shanghai 200092 P. R. China

Abstract

AbstractAn effective systemic mechanism regulates tumor development and progression; thus, a rational design in a one‐stone‐two‐birds strategy is meant for cancer treatment. Herein, a hollow Fe3O4 catalytic nanozyme carrier co‐loading lactate oxidase (LOD) and a clinically‐used hypotensor syrosingopine (Syr) are developed and delivered for synergetic cancer treatment by augmented self‐replenishing nanocatalytic reaction, integrated starvation therapy, and reactivating anti‐tumor immune microenvironment. The synergetic bio‐effects of this nanoplatform stemmed from the effective inhibition of lactate efflux through blocking the monocarboxylate transporters MCT1/MCT4 functions by the loaded Syr as a trigger. Sustainable production of hydrogen peroxide by catalyzation of the increasingly residual intracellular lactic acid by the co‐delivered LOD and intracellular acidification enabled the augmented self‐replenishing nanocatalytic reaction. Large amounts of produced reactive oxygen species (ROS) damaged mitochondria to inhibit oxidative phosphorylation as the substituted energy supply upon the hampered glycolysis pathway of tumor cells. Meanwhile, remodeling anti‐tumor immune microenvironment is implemented by pH gradient reversal, promoting the release of proinflammatory cytokines, restored effector T and NK cells, increased M1‐polarize tumor‐associated macrophages, and restriction of regulatory T cells. Thus, the biocompatible nanozyme platform achieved the synergy of chemodynamic/immuno/starvation therapies. This proof‐of‐concept study represents a promising candidate nanoplatform for synergetic cancer treatment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3