Boosting Ferroptosis and immunotherapy for Colorectal Cancer by Lactate‐Related Metabolic Reprogramming

Author:

Li Zhenhao12,He Shan2,Xie Lei1,Zeng Guoning1,Huang Jiehao1,Wang Huaiming1,Chen Hongwu1,Deng Tingting1,Xia Yubin1,Huang Cong1,Chen Zhian23ORCID

Affiliation:

1. The First Affiliated Hospital of Shantou University Medical College Shantou 515041 China

2. The First School of Clinical Medicine Southern Medical University Guangzhou 510515 China

3. Zhongshan City People's Hospital Zhongshan 528403 China

Abstract

AbstractAs the presence of anaerobic metabolism of glucose, solid tumors characteristically display higher levels of lactate production, which attenuate ferroptosis therapy and the subsequent anti‐tumor immune response. Herein, hyaluronic acid (HA)‐modified and lactate oxidase (LOX)‐loaded nanoscale metal organic frameworks (MOFs), termed as FCS@LOX@HA (FCSLH) is constructed, achieving tumor‐targeted metabolic combined chemo‐dynamic therapy (CDT). Notably, the high LOX‐loading capacity of MOFs is achieved by adjusting the Fe/Cu ratio. Upon internalization by cancer cells, the FCS MOFs reacted with local glutathione (GSH) to release Fe/Cu ions for CDT. Meanwhile, the LOX catalyzed endogenous lactate to pyruvate accompanied with a release of H2O2; while the latter can enhance the FCS MOFs‐mediated CDT effect. Additionally, lactate exhaustion can impair the antioxidant system by inhibiting the HIF‐1α/SLC1A1 pathway, resulting in the accumulation of lipid peroxidation, and ferroptosis occurs accompanied by immunogenic cell death. Furthermore, lactate exhaustion within tumor‐associated macrophages (TAMs) can inhibit M2 macrophage polarization by suppressing the NF‐κB/HIF‐1α pathway, thereby augmenting anti‐tumor immune response. The in vivo studies demonstrated that cooperating with PD‐L1 antibodies can achieve excellent anti‐tumor therapeutic efficacy. Taken together, FCSLH can amplify the ferroptosis‐mediated immune response through simultaneous dysfunction of cancer cells and TAMs, which provides novel insight for integrating metabolic programmed therapy and immunotherapy.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3