Multi‐Sensor Origami Platform: A Customizable System for Obtaining Spatiotemporally Precise Functional Readouts in 3D Models

Author:

Rahav Noam1,Marrero Denise234,Soffer Adi4,Glickman Emma4,Beldjilali‐Labro Megane4,Yaffe Yakey5,Tadmor Keshet6,Leichtmann‐Bardoogo Yael4,Ashery Uri156,Maoz Ben M.4567ORCID

Affiliation:

1. School of Neurobiology, Biochemistry and Biophysics The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel

2. Instituto de Microelectrónica de Barcelona (IMB‐CNM, CSIC) Campus UAB Bellaterra Barcelona 08193 Spain

3. Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina Madrid 50018 Spain

4. Department of Biomedical Engineering Tel Aviv University Tel Aviv 69978 Israel

5. Sagol Center for Regenerative Medicine Tel Aviv University Tel Aviv 69978 Israel

6. Sagol School of Neuroscience Tel Aviv University Tel Aviv 69978 Israel

7. The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel

Abstract

AbstractBioprinting technology offers unprecedented opportunities to construct in vitro tissue models that recapitulate the 3D morphology and functionality of native tissue. Yet, it remains difficult to obtain adequate functional readouts from such models. In particular, it is challenging to position sensors in desired locations within pre‐fabricated 3D bioprinted structures. At the same time, bioprinting tissue directly onto a sensing device is not feasible due to interference with the printer head. As such, a multi‐sensing platform inspired by origami that overcomes these challenges by “folding” around a separately fabricated 3D tissue structure is proposed, allowing for the insertion of electrodes into precise locations, which are custom‐defined using computer‐aided‐design software. The multi‐sensing origami platform (MSOP) can be connected to a commercial multi‐electrode array (MEA) system for data‐acquisition and processing. To demonstrate the platform, how integrated 3D MEA electrodes can record neuronal electrical activity in a 3D model of a neurovascular unit is shown. The MSOP also enables a microvascular endothelial network to be cultured separately and integrated with the 3D tissue structure. Accordingly, how impedance‐based sensors in the platform can measure endothelial barrier function is shown. It is further demonstrated the device's versatility by using it to measure neuronal activity in brain organoids.

Funder

Israel Science Foundation

Universitat Autònoma de Barcelona

Volkswagen Foundation

H2020 Marie Skłodowska-Curie Actions

Spanish National Plan for Scientific and Technical Research and Innovation

Israel Innovation Authority

HORIZON EUROPE European Research Council

Azrieli Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3