Multi‐Functional Bio‐HJzyme: Revolutionizing Diabetic Skin Regeneration with its Glucose‐Unlocked Sterilization and Programmed Anti‐Inflammatory Effects

Author:

He Miaomiao1ORCID,Wang Zuyao1,Yang Hang1,Wang Qiancun1,Xiang Danni1,Pang Xinyan1,Chan Yau Kei2,Sun Dan3,Yin Guangfu1,Yang Weizhong1,Deng Yi145ORCID

Affiliation:

1. College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China

2. Department of Ophthalmology The University of Hong Kong Hong Kong SAR 999077 China

3. Advanced Composite Research Group (ACRG) School of Mechanical and Aerospace Engineering Queen's University Belfast Belfast BT9 5AH UK

4. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

5. Department of Mechanical Engineering The University of Hong Kong Hong Kong SAR 999077 China

Abstract

AbstractAntibacterial dynamic therapy (ADT) triggered by reactive oxygen species (ROS) is promising for diabetic infectious disease treatment. However, the limited local O2/H2O2 production and post‐treatment inflammation remain long‐standing issues. To address these challenges, a novel H2‐evolving bio‐heterojunction enzyme (Bio‐HJzyme) consisting of graphite‐phase carbon nitride/copper sulfide (CN/Cu2−xS) heterojunction and glucose oxidase (GOx) is created. The Bio‐HJzyme offers glutathione peroxidase (GPx), peroxidase (POD), and catalase (CAT) mimetic activities; provides anti‐pathogen properties via programmed light activation; and effectively promotes diabetic wound healing. Specifically, its GPx‐mimetic activity and the presence of GOx significantly enhance the yield of H2O2, which can be catalyzed through POD‐mimetic activity to produce highly germicidal •OH. The H2O2 can also be catalyzed to H2O and O2, assisted by the CAT‐mimetic activity. The catalyzed products can then be catalyzed into germicidal •OH and •O2 under NIR light irradiation, giving enhanced ADT. Further, CN can split water to form H2 under solar light, which dramatically suppresses the inflammation caused by excessive ROS. In vivo evaluation confirms that Bio‐HJzyme promotes the regeneration of diabetic infectious skin through killing bacteria, enhancing angiogenesis, promoting wound bed epithelialization, and reinforcing anti‐inflammatory responses; hence, providing a revolutionary approach for diabetic wounds healing.

Funder

National Natural Science Foundation of China

State Key Laboratory of Polymer Materials Engineering

China Association for Science and Technology

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3