Rotary Structural Color Spindles from Droplet Confined Magnetic Self‐Assembly

Author:

Chen Hanxu1ORCID,Miao Shuangshuang1,Zhao Yuanjin12ORCID,Luo Zhiqiang1,Shang Luoran13

Affiliation:

1. Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China

3. Shanghai Xuhui Central Hospital, Zhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University Shanghai 200032 China

Abstract

AbstractStructural colors materials are profoundly explored owing to their fantastic optical properties and widespread applications. Development of structural color materials bearing flexible morphologies and versatile functionalities is highly anticipated. Here, a droplet‐confined, magnetic‐induced self‐assembly strategy for generating rotary structural color spindles (SCSPs) by fast solvent extraction is proposed. The as‐prepared SCSPs exhibit an orderly close‐packed lattice structure, thus appearing brilliant structural colors that serve as encoding tags for multiplexed bioassays. Besides, benefitting from the abundant specific surface area, biomarkers can be labeled on the SCSPs with high efficiency for specific detection of analytes in clinical samples. Moreover, the directional magnetic moment arrangement enables contactless magnetic manipulation of the SCSPs, and the resultant rotary motions of the SCSPs generates turbulence in the detection solution, thus significantly improving the detection efficiency and shortening the detection time. Based on these merits, a portable point‐of‐care‐testing strip integrating the rotary SCSPs is further constructed and the capability and advantages of this platform for multiplexed detection of tumor‐related exosomes in clinical samples are demonstrated. This study offers a new way for the control of bottom‐up self‐assembly and extends the configuration and application values of colloidal crystal structural colors materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3