Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models

Author:

Fu Nihang1,Hu Jeffrey12,Feng Ying3,Morrison Gregory4,Loye Hans‐Conrad zur4,Hu Jianjun1ORCID

Affiliation:

1. Department of Computer Science and Engineering University of South Carolina Columbia SC 29201 USA

2. Dutch Fork High School Irmo SC 29063 USA

3. Hangzhou University of Electronic Science and Technology Hangzhou 311305 China

4. Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29201 USA

Abstract

AbstractOxidation states (OS) are the charges on atoms due to electrons gained or lost upon applying an ionic approximation to their bonds. As a fundamental property, OS has been widely used in charge‐neutrality verification, crystal structure determination, and reaction estimation. Currently, only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition‐based oxidation state prediction still remains elusive so far, which has significant implications for the discovery of new materials for which the structures have not been determined. This work proposes a novel deep learning‐based BERT transformer language model BERTOS for predicting the oxidation states for all elements of inorganic compounds given only their chemical composition. This model achieves 96.82% accuracy for all‐element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61% accuracy for oxide materials. It is also demonstrated how it can be used to conduct large‐scale screening of hypothetical material compositions for materials discovery.

Funder

National Science Foundation

Division of Materials Research

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3