Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials

Author:

Dan Yabo,Zhao YongORCID,Li Xiang,Li Shaobo,Hu Ming,Hu JianjunORCID

Abstract

AbstractA major challenge in materials design is how to efficiently search the vast chemical design space to find the materials with desired properties. One effective strategy is to develop sampling algorithms that can exploit both explicit chemical knowledge and implicit composition rules embodied in the large materials database. Here, we propose a generative machine learning model (MatGAN) based on a generative adversarial network (GAN) for efficient generation of new hypothetical inorganic materials. Trained with materials from the ICSD database, our GAN model can generate hypothetical materials not existing in the training dataset, reaching a novelty of 92.53% when generating 2 million samples. The percentage of chemically valid (charge-neutral and electronegativity-balanced) samples out of all generated ones reaches 84.5% when generated by our GAN trained with such samples screened from ICSD, even though no such chemical rules are explicitly enforced in our GAN model, indicating its capability to learn implicit chemical composition rules to form compounds. Our algorithm is expected to be used to greatly expand the range of the design space for inverse design and large-scale computational screening of inorganic materials.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3