Advanced Neuromorphic Applications Enabled by Synaptic Ion‐Gating Vertical Transistors

Author:

Merces Leandro1ORCID,Ferro Letícia Mariê Minatogau1ORCID,Nawaz Ali2ORCID,Sonar Prashant34

Affiliation:

1. Research Center for Materials Architectures, and Integration of Nanomembranes (MAIN) Chemnitz University of Technology 09126 Chemnitz Germany

2. Center for Sensors and Devices Bruno Kessler Foundation (FBK) Trento 38123 Italy

3. School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4000 Australia

4. Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia

Abstract

AbstractBioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi‐modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion‐gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain‐like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting‐edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low‐voltage multi‐sensing IGVTs for artificial‐synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi‐stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi‐modal flexible sensor technologies and presents a roadmap for future high‐end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3