Resetting the Drift of Oxygen Vacancies in Ultrathin HZO Ferroelectric Memories by Electrical Pulse Engineering

Author:

Jan Atif1,Fraser Stephanie A.1,Moon Taehwan2,Lee Yun Seong3,Bae Hagyoul4,Lee Hyun Jae3,Choe Duk‐Hyun3,Becker Maximilian T.1,MacManus‐Driscoll Judith L.1,Heo Jinseong3,Di Martino Giuliana1ORCID

Affiliation:

1. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK

2. Department of Electrical and Computer Engineering University of Southern California Los Angeles CA 90089 USA

3. Samsung Advanced Institute of Technology Samsung Electronics Suwon‐si 16678 Korea

4. Department of Electronics Engineering Jeonbuk National University Jeonju‐si 54896 Korea

Abstract

Ferroelectric HfO2‐based films incorporated in nonvolatile memory devices offer a low‐energy, high‐speed alternative to conventional memory systems. Oxygen vacancies have been rigorously cited in literature to be pivotal in stabilizing the polar noncentrosymmetric phase responsible for ferroelectricity in HfO2‐based films. Thus, the ability to regulate and control oxygen vacancy migration in operando in such materials would potentially offer step changing new functionalities, tunable electrical properties, and enhanced device lifespan. Herein, a novel in‐ operando approach to control both wake‐up and fatigue device dynamics is reported. Via clever design of short ad hoc square electrical pulses, both wake‐up can be sped up and both fatigue and leakage inside the film can be reduced, key factors for enhancing the performance of memory devices. Using plasmon‐enhanced photoluminescence and dark‐field spectroscopy (sensitive to <1% vacancy variation), evidence that the electrical pulses give rise to oxygen vacancy redistribution is provided and it is shown that pulse engineering effectively delays wake‐up and reduces fatigue characteristics of the HfO2‐based films. Comprehensive analysis also includes impedance spectroscopy measurements, which exclude any influence of polarization reversal or domain wall movement in interpretation of results.

Funder

Royal Society

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3