Holes Outperform Electrons in Group IV Semiconductor Materials

Author:

Myronov Maksym1ORCID,Kycia Jan2,Waldron Philip3,Jiang Weihong3,Barrios Pedro3,Bogan Alex3,Coleridge Peter3,Studenikin Sergei3

Affiliation:

1. Physics Department The University of Warwick Coventry CV4 7AL UK

2. Physics and Astronomy Department University of Waterloo Waterloo N2L 3G1 Canada

3. Security and Disruptive Technologies Research Centre National Research Council of Canada Ottawa K1A 0R6 Ontario Canada

Abstract

A record‐high mobility of holes, reaching 4.3 × 106 cm2 V−1 s−1 at 300 mK in an epitaxial strained germanium (s‐Ge) semiconductor, grown on a standard silicon wafer, is reported. This major breakthrough is achieved due to the development of state‐of‐the‐art epitaxial growth technology culminating in superior monocrystalline quality of the s‐Ge material platform with a very low density of background impurities and other imperfections. As a consequence, the hole mobility in s‐Ge appears to be ≈2 times higher than the highest electron mobility in strained silicon. In addition to the record mobility, this material platform reveals a unique combination of properties, which are a very large and tuneable effective g*‐factor (>18), a very low percolation density (5 × 109 cm−2) and a small effective mass (0.054 m 0). This long‐sought combination of parameters in one material system is important for the research and development of low‐temperature electronics with reduced Joule heating and for quantum‐electronics circuits based on spin qubits.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference56 articles.

1. Global Semiconductor Sales Units Shipped Reach All-Time Highs in 2021 as Industry Ramps Up Production Amid Shortage https://www.semiconductors.org(accessed: August 2022).

2. CMOS-based cryogenic control of silicon quantum circuits

3. Fast two-qubit logic with holes in germanium

4. The germanium quantum information route

5. Single-hole physics in GaAs/AlGaAs double quantum dot system with strong spin–orbit interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3