Genome editing in rice and tomato with a small Un1Cas12f1 nuclease

Author:

Tang Xu1,Eid Ayman2,Zhang Rui1,Cheng Yanhao2,Liu Annan1,Chen Yurong1,Chen Pengxu1,Zhang Yong1,Qi Yiping23ORCID

Affiliation:

1. Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology University of Electronic Science and Technology of China Chengdu China

2. Department of Plant Science and Landscape Architecture University of Maryland College Park Maryland USA

3. Institute for Bioscience and Biotechnology Research University of Maryland Rockville Maryland USA

Abstract

AbstractThe clustered regularly interspaced short palindromic repeats (CRISPR) systems have been demonstrated to be the foremost compelling genetic tools for manipulating prokaryotic and eukaryotic genomes. Despite the robustness and versatility of Cas9 and Cas12a/b nucleases in mammalian cells and plants, their large protein sizes may hinder downstream applications. Therefore, investigating compact CRISPR nucleases will unlock numerous genome editing and delivery challenges that constrain genetic engineering and crop development. In this study, we assessed the archaeal miniature Un1Cas12f1 type‐V CRISPR nuclease for genome editing in rice and tomato protoplasts. By adopting the reengineered guide RNA modifications ge4.1 and comparing polymerase II (Pol II) and polymerase III (Pol III) promoters, we demonstrated uncultured archaeon Cas12f1 (Un1Cas12f1) genome editing efficacy in rice and tomato protoplasts. We characterized the protospacer adjacent motif (PAM) requirements and mutation profiles of Un1Cas12f1 in both plant species. Interestingly, we found that Pol III promoters, not Pol II promoters, led to higher genome editing efficiency when they were used to drive guide RNA expression. Unlike in mammalian cells, the engineered Un1Cas12f1‐RRA variant did not perform better than the wild‐type Un1Cas12f1 nuclease, suggesting continued protein engineering and other innovative approaches are needed to further improve Un1Cas12f1 genome editing in plants.

Funder

Natural Science Foundation of Sichuan Province

Division of Integrative Organismal Systems

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3